<section-header><section-header><section-header><text><text><text>

Selection of Patients

What must be known before PRRT?

- Histology / immunohistochemistry
 - grading, proliferation rate (Ki-67), CgA, Synaptophysin, hormone production (e.g. glucagon, gastrin, insulin)
- Receptor density ideally determined by receptor PET/CT (SUV) or scintigraphy
- Kidney function MAG3 (TER), Tc-99m DTPA
- Blood profile/chemistry RBC, WBC, PLT, Crea, BUN

<section-header><section-header><section-header><section-header><section-header><section-header>

Selection of Patients

What must be known before PRRT?

- Histology / immunohistochemistry
 - grading, proliferation rate (Ki-67), CgA, Synaptophysin, hormone production (e.g. glucagon, gastrin, insulin)
- Receptor density ideally determined by receptor PET/CT (SUV) or scintigraphy
- Kidney function MAG3 (TER), Tc-99m DTPA
- Blood profile/chemistry RBC, WBC, PLT, Crea, BUN

Molecular Diagnostic Imaging of SMS-R positive tumors

- NET of the intestine (foregut, midgut, hindgut) including bronchus carcinoid, GEP-NET
- Meningioma
- Aesthesioneuroblastoma
- Medullary thyroid cancer (MTC)
- Paraganglioma
- Pheochromocytoma
- Adrenal carcinoma
- Thymus cancer
- Hepatocellular carcinoma
- Merkel cell tumours (and many more....)

Radiopharmaceutical synthesis

97±2% ⁶⁸Ga [@] t^o + 4 min chemically and radiochemically pure

eluted directly into labelling vial, containing appropriate amounts of precursor, e.g. DOTA-TOC or DOTA-NOC, and an appropriate volume of water, *without (or with) using buffer systems*

for syntheses of ⁶⁸Ga-labelled tracers within 5 - 10 min yields: 95 – 98% for ⁶⁸Ga-DOTA-NOC

Specific activities: 35 MBq / µg DOTA-NOC in 5 ml water only

> 450 MBq / μg DOTA-NOC in 0.5 ml water + 1 M HEPES pH4

unior sitate main

Radiopharmaceutical purification 300 µl ₫ Ī Д þ þ enerator C18 IEX Labelling kinetics (min) purified product 5 10 after C18 1 ت 2 Product 85.2% 100% 51.4% 95% isot. NaCl Waste ∬C° Quality control: e.g. on silica gel impregnated glass fibre strips Ĵ (TLC alumina sheets SG 60 by MERCK) uniot sitat

Post-processing combined with labelling on an automated module

Summary ⁶⁸Ge/Ga Generator

 Post-processing of ⁶⁸Ge/⁶⁸Ga radionuclide generators using cation exchange resin provides chemically and radiochemically pure ⁶⁸Ga 97±2% within 4 min ready for on-line labelling

- Highest chemical purity guarantees for high labelling and overall product yields (e.g. ⁶⁸Ga-DOTA-conjugated octreotides) of 75±5% decay corrected
- Ready for injection up to 8 patients per day can be studied easy handling in a nuclear medical environment easily to transfer to IAEA and other countries (in use already in Dehli/India and Santiago de Chile)

Significant step towards the routine medical use of the ⁶⁸Ge/Ga generator

Ga-68 Receptor PET/CT

The Bad Berka Experience (>2,300 studies)

Receptor PET/CT using the Ga-68-labeled somatostatin analogue DOTA-NOC enables the molecular imaging of neuroendocrine tumours and their metastases with very high diagnostic sensitivity and specificty

Advantages:

- Semiquantitative, reproducible data (SUV) which can be used for selecting patients for PRRT and evaluation of therapy response
- fast protocol (60-90 min.), patient friendly, low radiation burden
- flexibility, daily use, lower (!) cost than Octreotide scintigraphy
- a new goldstandard for in vivo SMS receptor imaging

Comparative studies will probably allow to determine tumor and kidney dosimetry prior to subsequent PRRT using Y-90 or Lu-177-labeled somatostatin analogues.

Ga-68 DOTA-NOC receptor PET/CT: SUV of primary tumors and metastases

SUV primary tumors (n = 400 patients)	Mean	Range
Primary tumours	19.2	8.2 – 109
Liver mets	20.9	3.3 - 105
Lymph node mets	9.5	4.2 – 152
Bone mets	13.6	3.0 – 20.4
Brain mets	12.3	4.6 – 17.2
Lung mets	2.3	1.6 – 5.6
Abdominal mets	14.8	5.8 – 34.1

Selection of Patients

What must be known before PRRT?

- Histology / immunohistochemistry
 - grading, proliferation rate (Ki-67), CgA, Synaptophysin, hormone production (e.g. glucagon, gastrin, insulin)
- Receptor density ideally determined by receptor PET/CT (SUV) or scintigraphy

 Kidney function – MAG3 (TER), Tc-99m DTPA (GFR)

file/abarra

Kidney Toxicity - Summary

- Effect of Y-90 on renal function is much more pronounced (detrimental) as compared to Lu-177
- The number of courses given to the patient is a very important parameter to be taken into consideration for assessing the affect of PRRT on kidney function
- Lower quantity of radioactivity for each therapy course can be administered while increasing the number of courses and the time interval between courses with almost similar (better?) results on the tumor but with

Selection of Patients

What must be known before PRRT?

- Histology / immunohistochemistry
 - grading, proliferation rate (Ki-67), CgA, Synaptophysin, hormone production (e.g. glucagon, gastrin, insulin)
- Receptor density ideally determined by receptor PET/CT (SUV) or scintigraphy
- Kidney function MAG3 (TER), Tc-99m DTPA (GFR)

Increased Hematological Toxicity

- Previous chemotherapy (e.g. cisplatinum, etoposide, streptotozin etc.)
- Previous external radiation therapy (large fields)
- Previous high-dose PRRT with Y-90
- Disseminated bone (marrow) involvement
- Decreased renal function

Peptide Receptor Radionuclide Therapy How is it performed?

- Choice of peptide (DOTA-TATE or DOTA-TOC)
- Choice of radionuclide (Lu-177, Y-90)
- Kidney protection (lysine, arginine, Rotterdam protocol)
- Tumor and organ dosimetry (posttreatment scan
- Monitoring of toxicity (follow-up)

Peptide Receptor Radionuclide Therapy How is it performed?

- Choice of peptide (DOTA-TATE or DOTA-TOC)
- Choice of radionuclide (Lu-177, Y-90)
- Kidney protection (lysine, arginine, Rotterdam protocol)
- Tumor and organ dosimetry (posttreatment scan
- Monitoring of toxicity (follow-up)

Physical Properties of Radionuclides used for PRRT

Radionuclide	t _{1/2} (d)	energy (keV)	path length (^{mm)}	gamma (keV)
¹⁷⁷ Lutetium	6.7	133	2	113 (6.6%) 208 (11%)
90Yttrium	2.7	935	12	-
¹¹¹ Indium [*] *not suitable	2.8	auger electrons 14.7	<0.01	172 (90%)
for therapy				247 (94%)

[¹⁷⁷Lu-DOTA⁰,Tyr³]Octreotate Therapy: Relation to Chemotherapy

Table	3. Results an	d Side Ef	fects of Ch	nemotherap	oy in Patients	With Net	uroendocrine Tumors Compared With the Present \$	Study
				Median	Hematologic	Nausea		
			60	Response	Toxicity	and		
Benimen	Tumor Types	NO. OF Patients	CR (%)	(months)	Grade 3 and 4 (%)	vomiting (%)	Other Major Side Effects	Study
megimen	ramor rypes	racionto	011 (70)	(montria)	4 (70)	(70)	other Major olde Erreeta	otaay
Doxorubicin	Carc	33	21°	4	NA	NA	—	Moertel ²⁰
FU	Carc	19	26°	3	NA	NA	—	Moertel ²⁰
STZ + FU	Carc	43	33°	7	NA	NA	—	Moertel ²⁰
STZ	NEP	42	36°	17	0	83	Renal toxicity, 29%; liver failure, 2%	Moertel et al ²¹
STZ + FU	NEP	42	63*	17	29	85 <	Renal toxicity, 31%	Moertel et al ²¹
STZ + FU	NEP	33	45°	7	25	81	Diarrhea, 33%; renal insufficiency, 7%	Moertel et al ²²
STZ + doxorubicin	NEP	36	69*	20	5	80	Diarrhea, 5%; renal insufficiency, 4%; heart failure, 9%	Moertel et al ²²
STZ + doxorubicin	NEP	16	6	> 18	19	NA	Diarrhea, 19%; cardiac toxicity, 19%	Cheng and Saltz ²³
DTIC	Carc	15	13	4	NA	NA	_	Van Hazel et al ²⁴
DTIC	Carc	56	16	3	29	88	Diarrhea, 23%	Bukowski et al ²⁵
DTIC	Carc/NEP	7	14	NA	NA	0	-	Ritzel et al ²⁶
FU + IF-A	Carc/NEP	24	21	13	42	NA	Diarrhea, 8%	Andreyev et al ²⁷
Mitoxantrone	Carc	35	9	14	32	26	-	Neijt et al ²⁸
Paclitaxel	Carc/NEP	24	4	3	61	63	Diarrhea, 54%; neurologic toxicity, 61%	Ansell et al ²⁹
¹⁷⁷ Lu-octreotate	Carc/NEP	131	28	> 36	<2	31	Renal insufficiency, 1% liver failure, 1%	Present study
Abbreviations: PF carcinoids; NEP, n °Response evalua	R, partial remi: euroendocrine ation including	ssion; CF pancreat biochem	, complete ic tumors; ical respor	e remission NA, not av Ises and ph	n; DTIC, dime /ailable; IF-A, nysical examir	ethyltriaze interferor ation for	noimidazole carboxamide; FU, fluorouracil; STZ, s alpha; ¹⁷⁷ Lu-octreotate, [¹⁷⁷ Lu-DOTA ⁰ ,Tyr ³ loctreol evaluation of hepatomegaly.	treptozocin; Carc, ate.
Kwekkeboo	om et al, J	Clin C	Oncol 20	005;23:2	2754-2762		Er.	asmus MC Cafing

The Journal of Nuclear Medicine • Vol. 43 • No. 5 • May 2002

Tumor Response and Clinical Benefit in Neuroendocrine Tumors After 7.4 GBq ⁹⁰Y-DOTATOC

Christian Waldherr, MD¹; Miklos Pless, MD²; Helmut R. Maecke, PhD³; Tilmann Schumacher, MD¹; Armin Crazzolara, MD¹; Egbert U. Nitzsche, MD¹; Andreas Haldemann, MD⁴; and Jan Mueller-Brand, MD¹

¹PET Center, Institute of Nuclear Medicine, University Hospital, University of Basel, Basel, Switzerland; ²Department of Oncology, University Hospital, University of Basel, Basel, Basel, Switzerland; ³Institute of Radiological Chemistry, University Hospital, University of Basel, Basel, Switzerland; and ⁴Oncology Institute of Southern Switzerland, Bellinzona, Switzerland

Tumor type	Progression before treatment	CR	PR	SD	Progressive disease within or after treatment	Overall tumor response	CR, PR, SI
EPT (n = 13)	13 (100%)	1	4	6	2	38%	11 (85%)
Intestinal NET ($n = 12$)	12 (100%)	_	1	11	_	8%	12 (100%)
Bronchial NET $(n = 3)$	3 (100%)	_	_	3	_	0%	3 (100%)
NET of unknown origin $(n = 9)$	9 (100%)	_	2	6	1	22%	8 (89%)
Others $(n = 2)$	2 (100%)	1	_	1	_	50%	2 (100%)
All $(n = 39)$	39 (100%)	2	7	27	3	23%	36 (92%)

PRRT - SEQUENTIAL USE OF Y-90 & LU-177

Y-90 DOTA-TOC has been most frequently used for the treatment of metastatic neuroendocrine tumors (Waldherr et al., Paganelli et al.).

Lu-177 DOTA-TATE has shown very promising results in somatostatin receptor (SSTR) positive GEP tumors (Kwekkeboom et al.).

Few data exist on the use of Y-90 DOTA-TATE for PRRT of NET, none on the sequential use of Y-90 and Lu-177 DOTA-TATE.

Our strategy is to study

tumor.

- the therapeutic efficacy and
- to evaluate the short and longterm adverse effects

of PRRT using the somatostatin analogue octreotate labeled with Y-90 or Lu-177 in patients with *progressive*, metastasized neuroendocrine tumors (mostly with large tumor burden).

Peptide Receptor Radionuclide Therapy How is it performed?

- Choice of peptide (DOTA-TATE or DOTA-TOC)
- Choice of radionuclide (Lu-177, Y-90)
- Kidney protection (lysine, arginine, Rotterdam protocol)
- Tumor and organ dosimetry (posttreatment scan
- Monitoring of toxicity (follow-up)

Peptide Receptor Radionuclide Therapy How is it performed?

- Choice of peptide (DOTA-TATE or DOTA-TOC)
- Choice of radionuclide (Lu-177, Y-90)
- Kidney protection (lysine, arginine, Rotterdam protocol)
- Tumor and organ dosimetry (posttreatment scan)
- Monitoring of toxicity (follow-up)

DOSIMETRY

CANCER BIOTHERAPY & RADIOPHARMACEUTICALS Volume 22, Number 3, 2007 © Mary Ann Liebert, Inc, DOI: 10.1089/cbr.2006.325

Results of Individual Patient Dosimetry in Peptide Receptor Radionuclide Therapy with ¹⁷⁷Lu DOTA-TATE and ¹⁷⁷Lu DOTA-NOC

Christiane Wehrmann, Stefan Senftleben, Carolin Zachert, Dirk Müller, and Richard P. Baum Department of Nuclear Medicine/Center for P.E.T., Zentralklinik Bad Berka, Bad Berka, Germany

Peptide Receptor Radionuclide Therapy How is it performed?

- Choice of peptide (DOTA-TATE or DOTA-TOC)
- Choice of radionuclide (Lu-177, Y-90)
- Kidney protection (lysine, arginine, Rotterdam protocol)
- Tumor and organ dosimetry (posttreatment scan)
- Monitoring of toxicity (follow-up)

Monotoring for Toxicity

(Re-staging)

Laboratory tests

Hematology, liver enzymes, renal parameters (creatinine, BUN). The lab tests were repeated at monthly intervals between the therapy cycles by the caring physicians and sent to our institution.

Kidney function (GFR + TER MAG3 always before next PRRT)

RESTAGING OF PATIENTS

Restaging was always performed before the next therapy cycle by

Ga-68 DOTA-NOC PET/CT (with oral & i.v. contrast)

- Renal scintigraphy (Tc-99m MAG 3) with TER measurements
- GFR measurements (Tc-99m DTPA)
- Laboratory tests (hematology, liver enzymes, renal parameters)
- Tumor markers (chromogranin, serotonin, glucagon, gastrin etc.)
- MRI of the abdomen / spine (in selected cases)
- FDG-PET/CT (in selected cases)
- F-18-Fluoride-PET/CT (in selected cases)

The lab tests were also performed at monthly intervals between therapy cycles by the caring physicians and sent to our institution. *All data are entered into a database containing 270 single items.*

Results

- statistical analysis

- clinical results

PATIENTS' DATA

- In total, 475 patients were treated with Y-90 / Lu-177 DOTA-TATE
 - (overall 1,400 treatment courses as of January 31, 2008)
- Mean age: 58.1 years (4 81 years), 258 male, 217 female
- All patients were selected based on high SST-R expression as proven by Ga-68 DOTA-NOC receptor PET/CT
- Only progressive GEP NET patients treated with at least 3 cycles of PRRT were included in this analysis
- Assessment of therapy response was done after 3 cycles
- Three different groups were analyzed: PRRT using Y-90 (n=80), Lu-177 (n=19) and combined use of Y-90 & Lu-177 labeled DOTA-TATE (n=43)
 The average cumulative radioactivity administered was 10 GBq Y-90, 16 GBq Lu-177, and 12 GBq Lu-177 / Y-90 DOTA-TATE, respectively

PRRT – THE BAD BERKA CONCEPT

Selection of patients based on clinical aspects

(progressive tumours or uncontrolled symptoms despite maximum conventional therapy) and SMS-receptor expression

(determined by PET/CT)

- Frequent (4-6, up to 8) cycles of low (2 GBq) or intermediate high
- (3-4 GBq) therapies: long term low dose, not short term, high dose
- Combined use of Y-90 and Lu-177 (in sequence)
- Intra-arterial PRRT for inoperable primary tumors
- Standardized evaluation before therapy and systematic restaging
- All clinical data are entered into a systematic prospective database
- The management of the patient during PRRT is controlled by the
- nuclear medicine physician in cooperation with other specialists

SUMMARY AND CONCLUSIONS

- PRRT is an <u>effective</u> therapy even for very advanced cases and leads to a significant improvement of clinical symptoms
- Cure is rarely possible but good palliation can be achieved
- In patients with progressive NET, combined sequential Y-90 / Lu-177 PRRT is most effective (highest percentage of PR and SD)
- Significant kidney damage can be reduced (avoided) by extending the treatment intervals and by using lower therapy activities more frequently as up to 8 courses given over several years were tolerated very well by most patients (no end stage renal insufficiency).
- PRRT should only be performed at specialized centres as NET patients are frequently very ill patients (multimorbidity) and need interdisciplinary treatment and long term care

Future Perspectives

Pre-therapeutic organ and tumor dosimetry using receptor PET/CT and longer lived positron emitters, e.g. Sc-44, Y-86 Cu-64 or Cu-61 and comparison with Ga-68 results.

Selection of the optimal peptide and radionuclide for individual therapy of each patient ("personalized medicine") by pretherapeutic measurement of organ and tumor doses.

Y-86 DOTA-NOC Receptor PET/CT

Coworkers:

<u>MDs:</u> A. Niesen, C. Zachert, V. Prasad, M. Kupfer, J. Breitling <u>Radiochemistry:</u> R. Wortmann, I. Klette, S. Müller <u>Technicians:</u> P. Katzemann and coworkers <u>Nurses:</u> M. Wieditz, B. Schneiting and coworkers <u>Med. Physics / Dosimetry:</u> S. Senftleben, C. Wehrmann <u>Secretary / Logistics:</u> A. Cihar

<u>Collaboration:</u> Helmut Mäcke, Basel; Jean Claude Reubi, Bern; Frank Rösch, Mainz; Jeong JM, Seouland thanks to many colleagues for excellent cooperation

